76 research outputs found

    Day differences in the cortisol awakening response predict day differences in synaptic plasticity in the brain

    Get PDF
    The cortisol awakening response (CAR) is the most prominent, dynamic and variable part of the circadian pattern of cortisol secretion. Despite this its precise purpose is unknown. Aberrant patterns of the CAR are associated with impaired physical and mental health and reduced cognitive function, suggesting that it may have a pervasive role or roles. It has been suggested that the CAR primes the brain for the expected demands of the day but the mechanisms underlying this process are unknown. We examined temporal covariation of the CAR and rapid transcranial magnetic stimulation (rTMS)-induced long term depression (LTD)-like responses in the motor cortex. Plasticity was evaluated across 180 measures from 5 time points on 4 sessions across 9 researcher participants, mean age 25 ± 2.5 years. Plasticity estimates were obtained in the afternoon after measurement of the CAR on 4 days, at least 3 days apart. As both CAR magnitude and rTMS-induced responses are variable across days we hypothesised that days with larger than individual average CARs would be associated with a greater than individual average plasticity response. This was confirmed by mixed regression modelling where variation in the CAR predicted variation in rTMS-induced responses (Df: 1, 148.24; F: 10.41; p=0.002). As the magnitude of the CAR is regulated by the ‘master’ circadian CLOCK, and synaptic plasticity is known to be modulated by peripheral ‘slave’ CLOCK genes, we suggest that the CAR may be a mediator between the master and peripheral circadian systems to entrain daily levels of synaptic plasticity

    Gene Expression Analysis of In Vivo Fluorescent Cells

    Get PDF
    BACKGROUND: The analysis of gene expression for tissue homogenates is of limited value because of the considerable cell heterogeneity in tissues. However, several methods are available to isolate a cell type of interest from a complex tissue, the most reliable one being Laser Microdissection (LMD). Cells may be distinguished by their morphology or by specific antigens, but the obligatory staining often results in RNA degradation. Alternatively, particular cell types can be detected in vivo by expression of fluorescent proteins from cell type-specific promoters. METHODOLOGY/PRINCIPAL FINDINGS: We developed a technique for fixing in vivo fluorescence in brain cells and isolating them by LMD followed by an optimized RNA isolation procedure. RNA isolated from these cells was of equal quality as from unfixed frozen tissue, with clear 28S and 18S rRNA bands of a mass ratio of approximately 2ratio1. We confirmed the specificity of the amplified RNA from the microdissected fluorescent cells as well as its usefulness and reproducibility for microarray hybridization and quantitative real-time PCR (qRT-PCR). CONCLUSIONS/SIGNIFICANCE: Our technique guarantees the isolation of sufficient high quality RNA obtained from specific cell populations of the brain expressing soluble fluorescent marker, which is a critical prerequisite for subsequent gene expression studies by microarray analysis or qRT-PCR

    The genetic legacy of extreme exploitation in a polar vertebrate

    Get PDF
    Understanding the effects of human exploitation on the genetic composition of wild populations is important for predicting species persistence and adaptive potential. We therefore investigated the genetic legacy of large-scale commercial harvesting by reconstructing, on a global scale, the recent demographic history of the Antarctic fur seal (Arctocephalus gazella), a species that was hunted to the brink of extinction by 18th and 19th century sealers. Molecular genetic data from over 2,000 individuals sampled from all eight major breeding locations across the species’ circumpolar geographic distribution, show that at least four relict populations around Antarctica survived commercial hunting. Coalescent simulations suggest that all of these populations experienced severe bottlenecks down to effective population sizes of around 150–200. Nevertheless, comparably high levels of neutral genetic variability were retained as these declines are unlikely to have been strong enough to deplete allelic richness by more than around 15%. These findings suggest that even dramatic short-term declines need not necessarily result in major losses of diversity, and explain the apparent contradiction between the high genetic diversity of this species and its extreme exploitation history

    Convergence of marine megafauna movement patterns in coastal and open oceans

    Get PDF
    The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals’ movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of ∼2.8 million locations from >2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content

    Maintaining RNA integrity in a homogeneous population of mammary epithelial cells isolated by Laser Capture Microdissection

    Get PDF
    Background: Laser-capture microdissection (LCM) that enables the isolation of specific cell populations from complex tissues under morphological control is increasingly used for subsequent gene expression studies in cell biology by methods such as real-time quantitative PCR (qPCR), microarrays and most recently by RNA-sequencing. Challenges are i) to select precisely and efficiently cells of interest and ii) to maintain RNA integrity. The mammary gland which is a complex and heterogeneous tissue, consists of multiple cell types, changing in relative proportion during its development and thus hampering gene expression profiling comparison on whole tissue between physiological stages. During lactation, mammary epithelial cells (MEC) are predominant. However several other cell types, including myoepithelial (MMC) and immune cells are present, making it difficult to precisely determine the specificity of gene expression to the cell type of origin. In this work, an optimized reliable procedure for producing RNA from alveolar epithelial cells isolated from frozen histological sections of lactating goat, sheep and cow mammary glands using an infrared-laser based Arcturus Veritas LCM (Applied Biosystems®) system has been developed. The following steps of the microdissection workflow: cryosectioning, staining, dehydration and harvesting of microdissected cells have been carefully considered and designed to ensure cell capture efficiency without compromising RNA integrity.[br/] Results: The best results were obtained when staining 8 μm-thick sections with Cresyl violet® (Ambion, Applied Biosystems®) and capturing microdissected cells during less than 2 hours before RNA extraction. In addition, particular attention was paid to animal preparation before biopsies or slaughtering (milking) and freezing of tissue blocks which were embedded in a cryoprotective compound before being immersed in isopentane. The amount of RNA thus obtained from ca.150 to 250 acini (300,000 to 600,000 μm2) ranges between 5 to 10 ng. RNA integrity number (RIN) was ca. 8.0 and selectivity of this LCM protocol was demonstrated through qPCR analyses for several alveolar cell specific genes, including LALBA (α-lactalbumin) and CSN1S2 (αs2-casein), as well as Krt14 (cytokeratin 14), CD3e and CD68 which are specific markers of MMC, lymphocytes and macrophages, respectively.[br/] Conclusions: RNAs isolated from MEC in this manner were of very good quality for subsequent linear amplification, thus making it possible to establish a referential gene expression profile of the healthy MEC, a useful platform for tumor biomarker discovery

    Population Structure as Revealed by mtDNA and Microsatellites in Northern Fur Seals, Callorhinus ursinus, throughout Their Range

    Get PDF
    Background: The northern fur seal (Callorhinus ursinus; NFS) is a widely distributed pinniped that has been shown to exhibit a high degree of philopatry to islands, breeding areas on an island, and even to specific segments of breeding areas. This level of philopatry could conceivably lead to highly genetically divergent populations. However, northern fur seals have the potential for dispersal across large distances and have experienced repeated rapid population expansions following glacial retreat and the more recent cessation of intensive harvest pressure. Methodology/Principal Findings: Using microsatellite and mitochondrial loci, we examined population structure in NFS throughout their range. We found only weak population genetic structure among breeding islands including significant FST and W ST values between eastern and western Pacific islands. Conclusions: We conclude that insufficient time since rapid population expansion events (both post glacial and following the cessation of intense harvest pressure) mixed with low levels of contemporary migration have resulted in an absence of genetic structure across the entire northern fur seal range

    Imaging aspects of cardiovascular disease at the cell and molecular level

    Get PDF
    Cell and molecular imaging has a long and distinguished history. Erythrocytes were visualized microscopically by van Leeuwenhoek in 1674, and microscope technology has evolved mightily since the first single-lens instruments, and now incorporates many types that do not use photons of light for image formation. The combination of these instruments with preparations stained with histochemical and immunohistochemical markers has revolutionized imaging by allowing the biochemical identification of components at subcellular resolution. The field of cardiovascular disease has benefited greatly from these advances for the characterization of disease etiologies. In this review, we will highlight and summarize the use of microscopy imaging systems, including light microscopy, electron microscopy, confocal scanning laser microscopy, laser scanning cytometry, laser microdissection, and atomic force microscopy in conjunction with a variety of histochemical techniques in studies aimed at understanding mechanisms underlying cardiovascular diseases at the cell and molecular level

    Transcriptome Analysis of the Desert Locust Central Nervous System: Production and Annotation of a Schistocerca gregaria EST Database

    Get PDF
    ) displays a fascinating type of phenotypic plasticity, designated as ‘phase polyphenism’. Depending on environmental conditions, one genome can be translated into two highly divergent phenotypes, termed the solitarious and gregarious (swarming) phase. Although many of the underlying molecular events remain elusive, the central nervous system (CNS) is expected to play a crucial role in the phase transition process. Locusts have also proven to be interesting model organisms in a physiological and neurobiological research context. However, molecular studies in locusts are hampered by the fact that genome/transcriptome sequence information available for this branch of insects is still limited. EST information is highly complementary to the existing orthopteran transcriptomic data. Since many novel transcripts encode neuronal signaling and signal transduction components, this paper includes an overview of these sequences. Furthermore, several transcripts being differentially represented in solitarious and gregarious locusts were retrieved from this EST database. The findings highlight the involvement of the CNS in the phase transition process and indicate that this novel annotated database may also add to the emerging knowledge of concomitant neuronal signaling and neuroplasticity events. EST data constitute an important new source of information that will be instrumental in further unraveling the molecular principles of phase polyphenism, in further establishing locusts as valuable research model organisms and in molecular evolutionary and comparative entomology

    Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies

    Get PDF
    The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore